Estación Astrofísica de Bosque Alegre
Guía para el Observador

Mónica Silvia TAORMINA
La presente Guía del Observador de la Estación Astrofísica de Bosque Alegre fue realizada con el aporte económico de una Beca de Servicio Tipo A otorgada por la Asociación Argentina de Astronomía, bajo la dirección de la Dra. Mercedes Gómez.

Córdoba, 31 de Mayo de 2009
Indice

Introducción..3

I. Descripción Observatorio...4
 1. Estación Astrofísica Bosque Alegre...4
 2. Sala de Control..4
 2.1. PC1..6
 2.2. PC2..7
 2.2a. PMIS..8
 2.2b. Adquisición de imágenes..8
 2.3. PC3..11
 2.3a. Transferencia de archivos vía red entre la PC2 y PC3..12

II. Trabajando con imágenes...14
 1. ¿Qué es el seeing?..14
 2. IRAF...15
 2.1. Introducción y pautas básicas para su utilización...15
 2.2. Tareas y paquetes...17
 2.3. Obteniendo ayuda...18
 2.4. Funcionamiento de las tareas ..19
 2.5. Trabajando con imágenes..19
 2.5a. Formato...20
 2.6. Inspeccionando imágenes..20
 2.6a. Display...20
 2.6b. Imexamine...21
 2.6c. Implot...23

III. Valores recomendados...26
 1. Foco en Imagen directa...26
 1.1. Flatfield en los filtros B, V, R, I ...26
 2. Enfoque en Espectroscopía de Ranura Larga ...28
 2.1. Tiempo de exposición para la lámpara de comparación He-Ne-Ar29
 2.2. Flatfield de Lámpara...29
2.3. Ángulo de las redes y región espectral correspondiente 29
3. Mediciones de “Seeing” .. 31

Comentarios finales ... 32

Agradecimientos ... 32

Lecturas Recomendadas .. 33
Introducción

El presente documento espera servir de guía para el astrónomo profesional como también para aquellos que deseen realizar sus primeras experiencias observacionales con el Telescopio de la Estación Astrofísica de Bosque Alegre del Observatorio Astronómico de la Universidad Nacional de Córdoba.

En este instructivo se indica el procedimiento de observación estándar que debe emplearse para los distintos modos de observación, como ser imagen directa o espectroscopía con las distintas redes con las que se cuenta. También se indica, brevemente, el método aconsejado tanto para la adquisición como para un análisis rápido de las imágenes.

Con el objeto de orientar y facilitar la tarea del observador a la hora de la obtención de datos se proporcionan valores de como, por ejemplo, posición del inicial o aproximada del foco en cada filtro, ángulo de las distintas redes y correspondientes regiones espectrales, y se proporcionan valores preliminares de la medición del “seeing”.
I. Descripción del Observatorio

1. Estación Astrofísica de Bosque Alegre

Bosque Alegre cuenta con un telescopio reflektor ecuatorial de 1.54 m y un Espectrógrafo Multifunción (EMF) instalado en él. El detector actualmente disponible es una cámara CCD Photometric de 1024x1024 pixeles, lo cual proporciona un campo de 6.5’x6.5’, con un tamaño de pixel de 19x19 µm que se ubica en el plano focal de la cámara del espectrógrafo.

El telescopio permite dos configuraciones posibles de foco; Newtoniano y el Nasmyth, siendo éste último el utilizado. La relación focal en el foco Nasmyth es de f/19, con una escala de 6.7“/mm. Cuenta con movimientos automatizados y posiciones censadas, que pueden ser controlados desde la sala de control o desde la consola principal ubicada al lado del telescopio, entre otras alternativas.

El Espectrógrafo Multifunción es un instrumento de diseño modular que permite acceder en forma sencilla a nueve configuraciones diferentes. Para más detalles se recomienda consultar el manual del EMF disponible en la sala de control del telescopio (Díaz et al 1995). En las configuraciones no-espectroscópicas, el sistema trabaja simplemente como un reductor focal, generando una demagnificación en un factor 3 y ampliando consecuentemente el campo angular útil cubierto por el detector. Por este motivo el campo total de visión resulta del valor indicado en el primer párrafo. Hasta el momento, ha sido probado en dos modos distintos: imagen directa y espectroscopia de ranura larga en dispersión simple con las redes de 300 l/mm, 600 l/mm y 1200 l/mm. Este modo permite la obtención de espectros con red de difracción y ranura larga (3'50“ sobre el cielo), con dispersiones comprendidas entre 40 y 170 Å/mm, y una cobertura espectral entre 3600 y 10000 Å.

2. Sala de control

La sala de control del telescopio está situada en el primer piso del edificio, en el lado Sur de la planta del mismo. Cuenta con una habitación que alberga tres computadoras (PC1, PC2, PC3), otra sala principalmente para tareas de ingeniería, una pequeña cocina y un baño.

Al entrar en la sala de control a través del acceso Norte, a la izquierda se encuentran las
PC1 y PC2 las cuales están a cargo del operador del telescopio y en frente se ubica la PC3 en la cual trabaja el astrónomo visitante.

La Figura Nº1 y la Figura Nº2 proporcionan distintas vistas desde el interior de la sala de control del telescopio de la Estación Astrofísica de Bosque Alegre.

Figura Nº1: Vista Sur desde el interior de la sala de control.

Figura Nº2: Vista Noreste desde el interior de la sala de control.
A continuación se comenta brevemente la finalidad y las características más importantes de cada una de las unidades que se encuentran en la sala de control.

2.1. **PC1**

La PC1 controla y maneja el telescopio como así también la cúpula (ver Figura Nº3). Los programas de esta PC corren en el entorno de Microsoft Windows 98.

Cabe mencionarse que el sistema de automatización del telescopio es operado por el asistente nocturno y por motivos de seguridad es conveniente que así continúe, por lo tanto el observador no necesita estar familiarizado con este tipo de tareas. Lo mismo ocurre con el llenado de nitrógeno de CCD y otras tareas más bien de rutina que están a cargo del mencionado asistente nocturno.

El llenado del CCD se realiza al inicio de la noche, en medio de ésta y dependiendo de la duración de la misma puede llegar a necesitarse un tercer llenado. El asistente nocturno advierte al astrónomo visitante sobre la necesidad de efectuar el llenado del CCD. La temperatura óptima de trabajo es de -110 °C.
Actualmente se cuenta con dos estudiantes de ingeniería en computación, que bajo la supervisión del Ing. Julio Sánchez⁠, están realizando una versión mejorada de los programas que controlan el telescopio. También se reemplazará la PC que se posee por una de mejores prestaciones.

2.2. PC2

La PC2 es la encargada de la adquisición de las imágenes (ver Figura N°4). Es el equipo en el que se ha instalado la interface de comunicación con la controladora de la cámara CCD, esta máquina trabaja con el sistema operativo Windows 95, tiene 32 MB de RAM y 3 GB de disco rígido.

Tanto las imágenes de los objetos de programa como aquellas de calibración (bias, dark y flat) son tomadas a través del sistema de control de CCDs “PMIS” (versión 2.1), guardadas en formato FITS (Flexible Image Transport System) en el disco de la unidad y transferidas mediante una conexión en red a la PC3 para un rápido testeo de éstas durante la noche observación.

Próximamente se adquirirá una nueva cámara CCD con la cual se podrá reemplazar esta PC por una de mejor rendimiento y mayor capacidad. La nueva cámara CCD es de tipo ALTA U6 de 1024x1024 píxeles, con un tamaño de pixel de 24x 24 µm. Sin embargo, una vez instalado el nuevo CCD, se prevé que las imágenes se continuarán adquiriendo con PMIS como actualmente se hace.

1 El Ing. Julio Sánchez pertenece a la carrera del personal de apoyo del CONICET y tiene a su cargo las tareas de mantenimiento y mejoras de las componentes electrónicas de la Estación Astrofísica de Bosque Alegre.
2.2a. PMIS

El programa PMIS (Image Processing Software) es un software compatible con Microsoft Windows diseñado para ayudar a los usuarios a adquirir, visualizar, analizar y almacenar imágenes.

PMIS usa todas las componentes de interface familiares de Windows tal como la visualización de múltiples ventanas independientes, iconos de herramientas, barras deslizadoras, menús, cuadros de diálogo y ayuda en línea para la asistencia en la realización de las tareas de adquisición y procesamiento de las imágenes de manera eficiente. Sin embargo en la Estación Astrofísica de Bosque Alegre, PMIS es usado con exclusividad para la adquisición de imágenes. Para el análisis de las mismas se dispone del paquete IRAF instalado en la PC3 (ver sección 2.3).

2.2b. Adquisición de imágenes

A la adquisición de datos es conveniente realizarlas a través de macros. Los macros son pequeños programas o rutinas escritos directamente por el usuario (los principales macros vienen con el programa), a partir de comandos específicos que son compilados por el Interpretador de
Comandos ó *Command Line Interpreter (CLI)* del PMIS. Estos macros permiten automatizar operaciones repetitivas o secuencias complejas de comandos, acelerando todos los procesos de manejo de imágenes. Mediante el CLI también se puede leer y escribir archivos ASCII externos. Todas las especificaciones de los comandos y las variables pueden encontrarse en los manuales de PMIS o utilizando el *help* de este mismo.

Los macros se encuentran en el menú "User" en la ventana principal de PMIS y en la ventana de imagen. Pueden seleccionarse hasta dos macros para ser ejecutados desde los iconos de herramientas.

Los macros que utilizaremos principalmente son:

- Object
- Bias
- Flat
- Dark
- Image

El macro Focus Images no se lo incluye en la lista anterior debido a que por el momento no se lo utiliza para lograr el foco en la imagen. Se está trabajando para poder emplear este macro y facilitar la tarea. Por el momento el enfoque de las imágenes se realiza mediante el programa IRAF instalado en la PC3, como se describe más adelante.

Al momento de la obtención de las imágenes se le deberá informar al operador los parámetros de los diferentes macros. A continuación se detallan los que son necesarios en cada caso.

- **Object**: Al tomar una o más imágenes de un objeto y salvar las imágenes como archivos FITS. Se pedirá:

 - número de imágenes que se requieren
 - tiempo de exposición en segundos
 - nombre del objeto (opcional)
 - filtro (opcional)
 - ascensión recta (opcional; no en la versión 2.1)
 - declinación (opcional; no en la versión 2.1)
 - época (opcional; no en la versión 2.1)

Los parámetros no pueden tener espacios (p. ej., NGC-7029 está permitido, pero no NGC
La ascensión recta y declinación pueden estar escritas de la manera conveniente p. ej., 3h40m22.3s o 03:40:22.3.

En la versión 2.1, la ascensión recta, declinación y época se ponen automáticamente en los encabezados. La época usada es la época actual.

- **Bias**: Al tomar una o más imágenes de bias y almacenar las imágenes en archivos FITS, se pedirá el número de imágenes de bias que se requieran.

- **Flat**: Al tomar uno o más campos planos y guardar las imágenes en archivos FITS, se pedirá:
 - número de campos planos que se quieren
 - tiempo de exposición
 - nombre del campo plano (p. ej., "cielo"; opcional)
 - filtro (opcional)

 Nuevamente, los parámetros no pueden tener espacios (p. ej., Twilight-Flat está permitido, pero no Twilight Flat).

- **Dark**: Al tomar una o más imágenes sin abrir el obturador y salvar las imágenes en archivos FITS, se pedirá número de imágenes que se necesitan y el tiempo de exposición.

- **Image**: Al tomar una imagen y salvarla en el archivo image.fits, se pedirá el tiempo de exposición en segundos.

- **Nombres**: Los nombres de los archivos FITS escritos por los macros Object, Flat, Bias y Dark consisten de un número seguido por una letra y ".fit". Un solo número de secuencia se usa para todos los tipos de imágenes. La letra indica el tipo de imagen: "o" para imágenes de objetos, "f" para campos planos o flatfields, "d" para imágenes oscuras, "b" para imágenes de bias y "a" para lámparas de comparación.

 Por ejemplo, si se toman tres campos planos, dos bias, un objeto y una exposición de una lámpara, la secuencia de archivos FITS sería algo como:

 1001f.fit 1002f.fit 1003f.fit 1004b.fit
 1005b.fit 1006o.fit 1007a.fit

 Así, el orden y tipo de las imágenes son evidentes a partir de sólo los nombres de los archivos.

Notas importantes:

- **Las imágenes que se obtienen, por el momento no son acompañadas por sus headers ya que no se cuenta con un programa que los genere en forma automática.**

 Por este motivo se aconseja a los astrónomos tomar nota de las especificaciones que crea necesarias. Al presente un estudiante de ingeniería en computación está trabajando en el tema.

- En esta guía se comenta el procedimiento de la obtención de imágenes mediante el software PMIS, pero como se dijo al inicio de esta sección esto es manejado por el operador.

2.3. **PC3**

Éste es el equipo en el cual trabaja el astrónomo visitante (ver Figura Nº5). Esta PC opera con el sistema operativo Linux, distribución Ubuntu 9.04, posee conexión a Internet y se encuentra conectada en red a la PC2 para poder transferir las imágenes al directorio de trabajo.

Cada astrónomo visitante deberá elegir una cuenta de usuario de las que se listan a continuación y crear una carpeta donde se guardarán las imágenes de esa noche. Una sugerencia a la hora de guardar las imágenes es adoptar un nombre que permita especificar la noche de observación. Los 4 primeros dígitos indican los días entre los cuales está comprendida la noche, los 2 siguientes indican el mes y los 2 últimos el año. Ejemplo: 19200210 indica la noche entre el 19 y el 20 de febrero de 2010. De esta manera se evita la ambigüedad de saber si la noche es anterior o posterior a la fecha indicada.

Cuentas observadores: observa1 - eaba001

observa2 - eaba002

observa3 – eaba003
Una vez al mes se realizará un backup de las imágenes que se encuentran en la PC y se limpiará el disco rígido de la unidad. Se recomienda que el observador se responsabilice por sus datos. Para ello el usuario cuenta con una grabadora de DVD, puertos USB que facilitan el traslado personal de los archivos y la posibilidad de transferencia vía ftp o sftp a las cuenta del usuario en su lugar de trabajo.

![Figura N°5: PC3, para un análisis rápido de las imágenes que se van obteniendo.](image)

Para un ágil análisis de los datos se ha instalado el programa "Image Reduction and Analysis Facility" (IRAF) y la herramienta gráfica SAOImage (ds9). En la sección II.2 se da una breve introducción a estos programas y las pautas a tener en cuenta para un examen rápido de las imágenes que se van adquiriendo de la PC2 y de esta manera poder efectuar, en el momento, las correcciones que sean necesarias. Este punto es muy importante, pues de no ser así no se tendría certeza de la calidad de las imágenes hasta su procesamiento, una vez finalizada la observación.

2.3a. Transferencia de archivos vía red entre la PC2 y PC3

En el panel principal desplegar el menú **Lugares**, luego seleccionar **Red**. Se abrirá el directorio Red donde se encuentra el subdirectorio **ccd**, entre otros. Al abrirlo seleccionar la carpeta **D**. Dentro de esta última carpeta se ubican todos los archivos y directorios relacionados
con PMIS. Las imágenes que se adquieren con este programa se van almacenando en el directorio *imágenes*.

Por lo tanto, para llevar las imágenes que nos interesan al directorio de trabajo en la PC3, se las deberá copiar y posteriormente pegar en el *Escritorio* de la PC3 antes de pasarlas al directorio de trabajo.

Nota importante:
- Es conveniente notar que dada la pequeña capacidad de almacenamiento en la PC2 (3 GB), el observador debe tener la precaución de solicitar al asistente nocturno que se “limpie” el disco de la PC varias veces durante la noche, según resulte necesario.
II. Trabajando con imágenes

1. ¿Qué es el seeing?

La atmósfera de la tierra influye en las observaciones astronómicas hechas desde la superficie terrestre cambiando la dirección del haz de luz debido a variaciones del índice de refracción en zonas turbulentas de la atmósfera. Las fluctuaciones al azar en la dirección de la luz estelar producen el efecto denominado "seeing".

La forma de la imagen estelar observada a través de un telescopio con bastante aumento, generalmente no se corresponde con el patrón de difracción teórico.

El perfil de una imagen estelar, ver Figura Nº6, consta de tres partes. En el centro es un disco aproximadamente uniforme, rodeado por una región con una rápida caída de brillo. Esta porción es el disco del "seeing". Luego, la pendiente se hace moderada y decrece inversamente proporcional al cuadrado de la distancia al centro de la imagen. Esta zona se denomina aureola ó halo y puede deberse a luz difractada por imperfecciones ópticas del telescopio, y por polvo y aerosoles de la atmósfera. La forma del perfil no tiene una expresión analítica.

Además del seeing, los defectos ópticos, la precisión del enfoque y los errores de la relojería son algunas de las otras causas que afectan la forma de la imagen estelar en el plano...
focal. El propio CCD contribuye a través del fenómeno de difusión de cargas y por el muestreo debido al tamaño fino de los pixels.

Una manera de cuantificar el ensanchamiento de una imagen estelar es especificando el valor del ancho del perfil correspondiente a la mitad de su intensidad máxima. Esta cantidad se denomina "ancho mitad" ó FWHM (Full Width at Half Maximum).

2. IRAF
2.1. Introducción y pautas básicas para su utilización

IRAF corresponde a las siglas Image Reduction and Analysis Facility. Es un paquete de herramientas para el procesamiento de imágenes astronómicas (reducción, fotometría, astrometría, espectroscopía).

Fue desarrollado a mediados de los años 80 por la institución National Optical Astronomy Observatories (NOAO) en Tucson, Arizona. Se ha hecho popular entre la comunidad astronómica entre otras cosas por haber sido seleccionado como el sistema sobre el cual se basan los programas de reducción y análisis de datos del Telescopio Espacial (HST). Su arquitectura permite que se añadan paquetes externos con facilidad.

Antes de iniciar IRAF es necesario tener en cuenta varios detalles. El sistema IRAF necesita un directorio de arranque. Por este motivo, supongamos al usuario observa1 situado en el directorio en el cual va a trabajar, es decir que está ubicado en /home/observa1/dirwork. Desde una terminal posicionados en ese directorio de trabajo ejecutamos el comando mkiraf. Este comando creará el subdirectorio uparm y nos preguntará que tipo de terminal vamos a usar, por lo general será xgterm. Finalmente se creará automáticamente el archivo login.cl. El login.cl es un archivo de configuración ejecutado en cada inicio de sesión de IRAF. El directorio uparm contiene los archivos de parámetros para comandos modificados por el usuario.

Lo que se verá en la consola será (en azul lo que se introduce):

```plaintext
mkiraf
-- creating a new uparm directory
Terminal types: xgterm,xterm,gterm,vt640,vt100,etc.
Enter terminal type: xgterm
A new LOGIN.CL file has been created in the current directory.
```
Ahora se está en condiciones de ejecutar IRAF, pero antes de iniciar con el programa propiamente dicho se necesita abrir una terminal gráfica para poder desplegar las imágenes. Para ello sobre la consola se introduce el comando `xgterm &`. Esto inicia una nueva ventana que contiene una interfaz gráfica mejorada para el análisis de datos y en la cual se seguirá trabajando.

Nota importante:
- El comando `mkiraf` se ejecuta por única vez dentro del directorio de trabajo. Sólo habrá necesidad de ejecutarlo nuevamente cuando se cambia de directorio, donde no se encuentre `login.cl` y `upar`. Si en el directorio de trabajo ya están creados estos últimos se abre directamente la consola gráfica.

Sobre la ventana `xgterm` y desde el directorio de trabajo se lanza el sistema IRAF con el comando: `cl`. CL proviene de Command Language, con él se accede a todas las facilidades del sistema IRAF.

Cuando inicia el sistema, se podrá ver información acerca de la versión, algún mensaje de bienvenida y además nos dirá los paquetes disponibles en nuestro entorno. Se reconocerá que se ha entrado cuando se obtiene el prompt `cl`. Para salir del entorno del `cl` se usa el comando `logout`.

```
> cl
NOAO PC-IRAF Revision 2.11.3 EXPORT Tue Oct 26 21:01:12 MST 1999
This is the EXPORT version of PC-IRAF V2.11 supporting most PC systems.
Welcome to IRAF. To list the available commands, type ? or ??.
To get detailed information about a command, type `help command'.
To run a command or load a package, type its name. Type `bye' to exit a package, or `logout' to get out of the CL.
Type `news' to find out what is new in the version of the system you are using.
The following commands or packages are currently defined:
dataio.  dbms.  images.  language.  lists.  noao.
obsolete.  plot
cl>
```
Al llamar al IRAF desde otro directorio, saldrá un mensaje de advertencia:

```
> cl
Warning: no login.cl found in login directory
```

Entonces se deberá salir de IRAF, situarse en el directorio correcto y llamarlo nuevamente.

```
c1> logout
> pwd
/home/observa1/
> cd dirwork
> cl
```

Por último, se necesitará una herramienta de visualización. IRAF no cuenta con este sistema pero permite utilizar programas externos como: SAOImage (ds9) que fue de los primeros dispositivos, es simple y robusto. Para abrirlo se escribe sobre la xgterm `ds9 &` ó `!ds9 &` (el primero si se lo corre desde la terminal gráfica antes de iniciar el cl y el segundo en el caso de ya encontrarse dentro del cl).

2.2. Tareas y paquetes de programas

El elemento básico dentro del cl es la tarea (task) o comando IRAF, es un programa usado para realizar una función específica. Las tareas que cumplen funciones similares y/o están relacionadas lógicamente se agrupan juntas en un paquete (package). A su vez, los paquetes relacionados entre sí pueden ser agrupados a un nivel superior.

Una lista con los principales paquetes que constituyen el núcleo del sistema IRAF aparece debajo:

- **dataio** - tareas para realizar la conversión a distintos formatos de datos.
- **images** - utilidades para el tratamiento general de imágenes (operaciones aritméticas, filtros, combinaciones, etc).
- **language** - el lenguaje de comandos en sí mismo.
- **lists** - procesado de listas (listas de nombres, ficheros, etc)
- **noao** - contiene la mayoría de las tareas usadas en el tratamiento de datos CCD, análisis y calibración tanto de espectroscopía como fotometría.
- **plot** - tareas gráficas para imágenes de cualquier dimensión, manipulación de ficheros.
gráficos ("metacode files").

proto - tareas prototipo o en desarrollo.

obsolete - tareas antiguas que por su gran uso se mantienen.
tv - utilidades para visualización de imágenes y control.
system - utilidades del sistema (copiar, borrar, renombrar ficheros),
stsdas - tareas desarrolladas por el STScI
utilities - miscelánea de tareas.

Para el análisis durante la noche de observación se utilizará el paquete “images”.

Cuando el sistema se inicia sólo se tienen cargados un cierto número de paquetes, por ello no todos los programas son accesibles. Para ejecutar cualquier programa es necesario cargar previamente el paquete que lo contiene, para ello basta con teclear el nombre del paquete (siempre en minúsculas). Cada vez que se carga un paquete aparece en pantalla una lista con todos los programas o subpaquetes que contiene, a partir de ese momento ya se tiene acceso a ellos. Los nombres seguidos por un punto son los paquetes cargados. Los nombres sin punto final son tareas. También se notará que cambia el "prompt", y que se obtienen las dos primeras letras del paquete recién cargado. Conviene mencionar que al cargar muchos paquetes la memoria de la máquina queda reducida para realizar otros procesos, comprometiendo su rendimiento. Para abandonar un paquete cargado y que no vaya a ser usado posteriormente se usa el comando bye. No obstante sólo se puede abandonar el último paquete cargado y así sucesivamente en orden ascendente.

2.3. Obteniendo ayuda

Existen varias posibilidades de obtener ayuda sobre los paquetes y tareas de IRAF:

help task – muestra todo el texto de la página de ayuda sobre el comando, en este caso.
task (existen varias secciones: parámetros, descripción, ejemplos).
phelp task – muestra el help por página (= help | page)
describe tarea - muestra la sección de descripción para esa tarea.
example tarea - muestra la sección de ejemplos para esa tarea.
help package - describe (uno por línea) los subpaquetes o tareas del paquete.
package - lista todos los paquetes cargados.
? - lista los paquetes cargados, si se está en un paquete particular o lista las tareas o
subpaquetes de ese paquete.

?? - lista las tareas o subpaquetes de todos los paquetes

Sólo basta con escribir alguno de los comandos expuestos anteriormente en el **cl**.

2.4 Funcionamiento de las tareas

La forma en que opera una tarea o comando está determinada por sus **parámetros**.

Existen dos tipos de parámetros:

- **requeridos** (*query or required parameters*): deben ser especificados al llamar la tarea. De lo contrario aparecerá un prompt requiriendo su ingreso. Son "aprendidos" (*learned*) por la tarea, transformándose en **default** para la próxima corrida del comando. Deben ser proporcionados en el orden correcto en la línea de comandos.

- **ocultos** (*hidden parameters*): no es necesario especificarlos, la tarea usa valores **default**. Pueden especificarse en la línea de comandos, en cualquier orden, pero siempre después de los parámetros requeridos.

```
cl> lpar task    # muestra los parámetros de la tarea task
cl> epar task    # edita los parámetros. Para salir y salvar se escribe ":q"

    # para salir descartando cambios escribir ":q!"
    # con ":go" se sale ejecutando.
cl> unlearn task # vuelven los parámetros de task a sus valores default
```

Nota importante:
- Se hace notar que en la actualidad la versión de IRAS distribuida libremente por NOAO requiere el comando "ecl" y no "cl" para comenzar a correr el paquete IRAS.

2.5. Trabajando con imágenes

Una imagen consiste en un archivo binario formado a su vez por un archivo ascii (llamado **header**) con información sobre como están grabados los datos y los datos propiamente dichos, que pueden tener cualquier dimensión.
2.5a. Formato

El sistema IRAF puede leer y escribir una variedad de formatos de imágenes, pero con el que se va a trabajar es con el formato FITS - Flexible Image Transport System. Es el formato Universal y se usa para distribuir datos.

Normalmente los programas reconocen el formato por la extensión de los ficheros que contienen las imágenes. Los valores de cada pixel también se pueden guardar en distinto formato: short (enteros con signo y 16 bit), long (enteros con signo y 32 bit), real (reales en 32 bit) y double (reales en 64 bit). Claramente las imágenes ocuparán mas o menos espacio en disco dependiendo del formato en que se guarden.

2.6. Inspeccionando imágenes

Existen varios programas que permiten ver en detalle las imágenes tanto visualmente como los valores de cada pixel, así como hacer algunas operaciones básicas.

En esta sección se explican los tres programas que se emplean para analizar la calidad de la imagen durante la obtención de las mismas, los demás se pueden encontrar en el manual de IRAF (http://iraf.noao.edu/).

2.6a. Display

Este comando permite visualizar la imagen en el dispositivo preferido (en nuestro caso ds9) y en cualquier plano de los disponibles. Por defecto se cubre el mapa de colores sólo con valores alrededor de la mediana de la imagen.

Para visualizar una imagen sobre el ds9 se escribe en la consola gráfica el comando display (o tan sólo disp) y a continuación el nombre de la imagen que se quiere examinar.

En consola lo se verá es:

```
c1>disp imagename.fit
frame to be written into (1:16) (1):
```

Aquí se puede pulsar directamente enter o seleccionar un frame, del 1 al 16, para desplegar la imagen sobre el número de frame especificado. Si se eligen distintos números de frame para distintas imágenes se la podrá visualizar todas a la vez.
2.6b. Imexamine

Esta tarea permite examinar interactivamente una imagen que ha sido previamente visualizada sobre la pantalla de imágenes (ds9). Es un programa muy completo y tiene muchas acciones que responden a una letra, entre las más destacadas están:

- **m**: estadística de una zona alrededor del cursor
- **r**: perfil radial del objeto próximo al cursor, centroide, anchura a altura mitad (FWHM), magnitud instrumental
- **h**: histograma de una zona alrededor del cursor
- **s**: diagrama de contorno en torno a la posición del cursor
- **e**: diagrama de superficie alrededor de la posición del cursor
- **c/l**: dibuja la columna o la fila marcada por el cursor
- **v**: dibuja un corte entre dos marcas del cursor
- **z**: lista de valores de cada pixel, alrededor de una posición seleccionada por el cursor.

Para un rápido examen de los datos que se obtienen durante la noche de trabajo en Bosque Alegre, se utilizarán las letras **r** y **e** para verificar el foco, y **s** para corroborar el tiempo de integración que se le esté dando a cada toma. En particular el comando **s** es muy útil para verificar en forma visual que la exposición no se encuentre saturada.

Para llevar a cabo la evaluación de las imágenes sobre la consola gráfica se ejecuta el comando *imexamine* (o tan sólo *imexam*). Luego colocando el cursor sobre la imagen se selecciona una estrella y se oprime en el teclado la letra correspondiente a la acción que se quiere llevar a cabo. Para salir de esta tarea se emplea la tecla **q** sobre la imagen.

A modo de ejemplo, la Figura Nº7 corresponde a la acción **r** aplicada a una imagen obtenida en Bosque Alegre durante el periodo de realización de esta guía, en el mismo se puede ver fácilmente que el FWHM es de 3.5 pixeles ó 1.3” (1pixel=0.38”).
La Figura N°8 corresponde a la acción e sobre la misma imagen y muestra la forma de ésta.
La Figura N°9 corresponde a la acción s sobre una imagen estelar y muestra el perfil de brillo tridimensional de ésta.

![Imagen de la Figura N°9](image)

Figura N°9: acción s de la tarea imexam.

2.6c. Implot

Esta es una tarea que despliega un gráfico bidimensional que permite manipular de forma interactiva las imágenes a través de comandos introducidos por teclado. Se aplicará esta tarea principalmente para la visualización de los datos conseguidos a través del modo espectroscópico.

Ejecutando el comando `implot` seguido del nombre de la imagen, una ventana gráfica aparecerá, capturando el puntero y dibujando la línea media de la imagen. Seleccionar una posición sobre la figura mostrada y presionar, dependiendo de lo que se necesite, la tecla correspondiente:

- **c** - dibuja la columna donde se encuentra posicionado el cursor.
- **l** - dibuja la fila donde se encuentra posicionado el cursor
- **s** - muestra valores estadísticos sobre la región. Dos posiciones sucesivas del cursor son necesarios, cada una seguida por s.
- **e** - expande el gráfico siguiendo el mismo procedimiento empleado para estadísticas.
Los siguientes comandos pueden ser ejecutados sin un click del mouse.

```
:l 75          - dibuja la línea 75.
:l 25 75       - dibuja el promedio entre la fila 25 hasta la 75.
:c 100 200     - dibuja el promedio entre la columna 100 a la 200.
:i imagename   - abre una nueva imagen de entrada.
:q             - sale de la tarea.
```

A modo de ejemplo se puede ver en la Figura Nº11 el espectro de la lámpara de comparación He-Ne-Ar obtenido promediando las líneas 200 a 400 para la red de 600 l/mm. Similarmente la Figura Nº12 corresponde al espectro de ésta lámpara para la red de 1200 l/mm entre las líneas 250 y 450.

![Figura Nº11: ejemplo de la tarea implot para la red de 600 l/mm.](image-url)
En la sala de control de telescopio se encuentran los Atlas de la mencionada lámpara que permite la identificación de la región espectral observada.

Esta misma tarea permite inspeccionar el espectro estelar. En este caso se deberá efectuar el promedio entre las líneas que abarquen el ancho de la imagen de la ranura para poder obtener una visualización del espectro observado.

Figura Nº12: ejemplo de la tarea implot para la red de 1200 l/mm.
III. Valores recomendados

En esta sección se ofrece al usuario algunos valores aproximados para la posición del foco en los distintos filtros y para los tiempos de exposición de distintas calibraciones (flats y lámparas de comparación).

1. Foco en Imagen Directa

Se cuenta con un mecanismo de enfoque comandado directamente desde la sala de control. El mismo desplaza axialmente el espejo secundario de la configuración Nasmyth, por medio de un motor paso a paso. La posición del espejo se encuentra sensada a la milésima de milímetro, y es mostrada en la pantalla de la PC1.

En este manual se dan los valores aproximados para la posición relativa del foco en los filtros B, R e I con respecto al filtro V. Estos se indican en la Tabla Nº1.

Tabla Nº1: posición del foco para los distintos filtros

<table>
<thead>
<tr>
<th>Filtro</th>
<th>Posición Relativa al filtro V</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>-0.06</td>
</tr>
<tr>
<td>V</td>
<td>0</td>
</tr>
<tr>
<td>R</td>
<td>0</td>
</tr>
<tr>
<td>I</td>
<td>+0.06</td>
</tr>
</tbody>
</table>

Se recomienda al observador enfocar las imágenes en el filtro V y luego utilizar la Tabla Nº1 para obtener los focos en los filtros restantes. Normalmente el telescopio quedará con el último valor de foco en el filtro V de la noche precedente por lo cual este valor puede utilizarse como un punto de partida. Se aconseja verificar el valor del foco al menos tres veces por noche.

1.1. Flatfield en los filtros B, V, R, I

Como se puede observar en la Figura Nº13, en la cúpula se encuentra una pantalla la cual es iluminada por una lámpara de intensidad variable para obtener de esta manera los flatfield de cúpula.

Para el presente manual se fijo la intensidad de la lámpara en el valor de 10 aproximadamente. Cabe mencionar que la escala de intensidad de la lámpara va de 0 a 25.
En la Tabla N°2 se indica el tiempo de exposición y el número promedio de cuentas obtenido en cada filtro.

<table>
<thead>
<tr>
<th>Filtro</th>
<th>Tiempo de Exposición [seg]</th>
<th>Nº de Cuentas</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>1500</td>
<td>5000</td>
</tr>
<tr>
<td>V</td>
<td>480</td>
<td>16000</td>
</tr>
<tr>
<td>R</td>
<td>60</td>
<td>18000</td>
</tr>
<tr>
<td>I</td>
<td>30</td>
<td>18000</td>
</tr>
</tbody>
</table>

Variando la intensidad de la lámpara y el tiempo de exposición se pueden obtener flatfields con el número de cuentas promedio deseado. Por ejemplo, en el caso del filtro B, con una intensidad de la lámpara igual a 20 se obtiene un promedio de 18000 cuentas en 180 seg.

La tarea de IRAF `instat` que se encuentra dentro del paquete `image` permite obtener el número promedio de cuentas.
2. Enfoque en Espectroscopía de Ranura Larga

El procedimiento de enfoque para el caso de espectroscopía de ranura larga, es regulando la posición de la lente de cámara del espectrógrafo (ver Figura Nº14) de manera que el plano de la ranura quede enfocado sobre el detector. En este caso el foco se obtiene manualmente fuera de la sala de control ya que no se posee una rueda graduada para indicar valores iniciales o aproximados de los focos para las distintas redes.

![Figura N°14: Espectrógrafo Multifunción.](image)

Para enfocar las redes se utilizan las lámparas de comparación, se toman varias imágenes correspondientes a distintas posiciones del foco y se analiza el ancho de las líneas. Dependiendo de esto se le indica al operador la posición del foco deseado.

Nota:
- Se recomienda hacer esta tarea por la tarde antes del comienzo de la noche de observación.
2.1 Tiempo de exposición para la lámpara de comparación He-Ne-Ar

En la Tabla N°3 se indican los tiempos de integración aproximados para la obtención de espectros de la lámpara de comparación en las tres redes disponibles.

<table>
<thead>
<tr>
<th>Red [l/mm]</th>
<th>Tiempos de Exposición [seg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>300</td>
<td>entre 60 y 90</td>
</tr>
<tr>
<td>600</td>
<td>entre 10 y 20</td>
</tr>
<tr>
<td>1200</td>
<td>entre 20 y 30</td>
</tr>
</tbody>
</table>

2.2. Flatfield de Lámpara

Para obtener los flatfields en el modo espectroscópico se utiliza una de lámpara de continuo (tugsteno). En la Tabla N°4 se indican los tiempos de exposición aproximados.

<table>
<thead>
<tr>
<th>Red [l/mm]</th>
<th>Tiempo de Exposición [seg]</th>
<th>N° de Cuentas</th>
</tr>
</thead>
<tbody>
<tr>
<td>300</td>
<td>45</td>
<td>15000</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>24000</td>
</tr>
<tr>
<td>600</td>
<td>120</td>
<td>18000</td>
</tr>
<tr>
<td>1200</td>
<td>240</td>
<td>18000</td>
</tr>
</tbody>
</table>

2.3. Ángulos de las redes y región espectral correspondiente

Se procedió a verificar para cada una de las redes los ángulos y la región espectral correspondiente. Se confirmaron los valores listados en el manual del EMF que se encuentra disponible en la sala de control del telescopio. Por completitud en esta guía para el usuario se incluyen estas cantidades en las Tablas N°5 (red de 300 l/mm), N°6 (red de 600 l/mm) y N°7 (red de 1200 l/mm).
Tabla Nº5: ángulos y long. de onda central para la rede de 300 l/mm

<table>
<thead>
<tr>
<th>Long. onda central [Å]</th>
<th>Ángulo [°]</th>
</tr>
</thead>
<tbody>
<tr>
<td>4740</td>
<td>37.50</td>
</tr>
<tr>
<td>5690</td>
<td>38.33</td>
</tr>
<tr>
<td>6450</td>
<td>39.00</td>
</tr>
</tbody>
</table>

Tabla Nº6: ángulos y long de onda central para la rede de 600 l/mm

<table>
<thead>
<tr>
<th>Long de onda central [Å]</th>
<th>Ángulo [°]</th>
</tr>
</thead>
<tbody>
<tr>
<td>4370</td>
<td>41.0</td>
</tr>
<tr>
<td>4900</td>
<td>42.0</td>
</tr>
<tr>
<td>5435</td>
<td>43.0</td>
</tr>
<tr>
<td>6020</td>
<td>44.0</td>
</tr>
<tr>
<td>6520</td>
<td>45.0</td>
</tr>
<tr>
<td>7065</td>
<td>46.0</td>
</tr>
</tbody>
</table>

Tabla Nº7: ángulos y long de onda central para la rede de 1200 l/mm

<table>
<thead>
<tr>
<th>Long de onda central [Å]</th>
<th>Ángulo [°]</th>
</tr>
</thead>
<tbody>
<tr>
<td>4100</td>
<td>48.8</td>
</tr>
<tr>
<td>4200</td>
<td>49.2</td>
</tr>
<tr>
<td>4300</td>
<td>49.5</td>
</tr>
<tr>
<td>4400</td>
<td>49.9</td>
</tr>
<tr>
<td>4500</td>
<td>50.3</td>
</tr>
<tr>
<td>4600</td>
<td>50.7</td>
</tr>
<tr>
<td>4700</td>
<td>51.1</td>
</tr>
<tr>
<td>4800</td>
<td>51.4</td>
</tr>
<tr>
<td>4900</td>
<td>51.8</td>
</tr>
<tr>
<td>5000</td>
<td>52.2</td>
</tr>
<tr>
<td>5100</td>
<td>52.6</td>
</tr>
<tr>
<td>5200</td>
<td>53.0</td>
</tr>
<tr>
<td>5300</td>
<td>53.3</td>
</tr>
<tr>
<td>5400</td>
<td>53.7</td>
</tr>
</tbody>
</table>
Se recuerda al observador que tanto la colocación de las redes como la posición en foco de las mismas son operaciones que están bajo la exclusiva responsabilidad del asistente nocturno.

3. Mediciones de "Seeing"

Desde marzo de 2009 se vienen realizando mediciones del "seeing" en la Estación Astrofísica de Bosque Alegre. Debido a los problemas surgidos con la conservación del vacío en la cámara CCD, estas mediciones han sido más bien esporádicas y no sistemáticas como sería deseable. El análisis de los datos disponibles al presente indica un valor medio del "seeing" de 2". En algunas ocasiones se alcanzan valores inferiores a 1.5". De manera análoga, los valores mayores a 3.5 -- 4" son poco frecuentes.

Es nuestra intención realizar un histograma con los valores de las mediciones realizadas. Por el momento no se posee una muestra estadísticamente significativa por lo que se ha preferido incluir estos valores como referencia para el usuario del telescopio de Bosque Alegre.
Comentarios finales

Durante el periodo de realización de la Beca de Servicio Tipo A, otorgada por la Asociación Argentina de Astronomía, el CCD actualmente en uso en Bosque Alegre tuvo dificultades para su normal operación ya que no conservaba el vacío por periodos prolongados de tiempo. Por lo cual requería que nuevamente se realice el vacío en el mismo para cada turno observacional de un par de noches. Este problema hace que además la Estación Astrofísica de Bosque Alegre no esté en condiciones de recibir comisiones de observación. Esto también ha limitado los alcances de este informe ya que sólo fue posible trabajar durante un número acotado de noches.

El personal técnico del Observatorio ha trabajado para solucionar éste problema. Recientemente (mayo de 2010) se ha comprobado que el vacío realizado durante el último turno técnico ha durado más de tres semanas, estimándose que se podría llegar a los dos meses de operación normal del CCD sin necesidad de realizar un nuevo vacío. Independientemente de ésto, como se dijo, el Observatorio Astronómico de Córdoba está adquiriendo una nueva cámara CCD. Con lo cual podrá continuarse con todas las tareas inicialmente planteadas para esta Beca. Es mi intención hacerle llegar a la Comisión Directiva de la Asociación Argentina de Astronomía una versión mejorada del presente manual una vez alcanzado el objetivo propuesto.

Agradecimientos

Se agradece a la Asociación Argentina de Astronomía por el otorgamiento de la Beca de Servicio Tipo A para poder llevar a cabo esta guía y poder contribuir de esta manera a la recuperación de la Estación Astrofísica de Bosque Alegre.
Lecturas Recomendadas

– Lajús, E. F., Fotometría diferencial con CCD. http://michay.fcaglp.unlp.edu.ar/~eflajus/PractEsp/Parte2.html

